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Abstract
Discrete dipole models provide a means of calculating optical properties of
semiconductor surfaces rapidly and quite accurately, but they are generally
regarded as being purely phenomenological. A connection between such
models and a quantum mechanical extreme tight binding (ETB) model is
established here. The dielectric function obtained from an extreme tight binding
model is shown to be of similar form to that of a model in which a solid is
treated as a lattice of polarizable, pointlike entities, the discrete dipole model.
The dielectric matrix is expressed in terms of its eigenvectors and eigenvalues,
which are dipole waves and plasmon energies. The ETB dielectric matrix is
used to derive the self-energy of valence and conduction band states in fcc
argon. This results in a simple physical picture where intra- and inter-band
scattering events result in virtual monopoles and dipoles on a lattice which
couple to plasmon modes. The self-energies of electron and hole states of fcc
argon are analysed in terms of multipolar contributions.

1. Introduction

Ab initio many-body calculations provide accurate results for single-particle and collective
excitations in solids and have been reported in the literature for about 15 years [1]. Such
calculations are still prohibitively expensive in computer time for systems with large unit
cells, which can, however, be treated by less accurate methods for excitations such as density
functionals. In this paper, two quantities encountered in many-body physics of solids, the self-
energy and screened interaction, are analysed using extreme tight binding (ETB) and discrete
dipole (DD) models. These models lend themselves to a clear understanding of the physics
involved and means of improving application of many-body methods to large systems may
be found once the relationship between classical dipole and quantum mechanical response
functions is understood. Plasmon pole approximations for the inverse dielectric function
are important in many-body calculations as they provide a means of obtaining the inverse
dielectric function at finite frequencies from a single calculation of the static dielectric matrix.
This paper shows that dipole wave eigenmodes from the DD model correspond to the plasmon
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modes obtained from an ETB calculation of the dielectric matrix and it presents an analysis
of contributions of the various plasmon modes to the dielectric function in condensed argon.
It is emphasized that the main purposes of this paper are: to provide an intuitive picture of
processes leading to electron and hole self-energies and to illuminate the physical basis of
discrete dipole models.

The discrete dipole model has a long history as a model for the dielectric response of
insulating or semiconducting materials, beginning with Lorentz and Ewald [2], who formulated
a method for calculating the lattice sums appearing in the model. Since then it has been
applied to bulk solids [3], solid surfaces [4–10] and scattering of electromagnetic radiation by
dust particles in space [11]. There are several other model dielectric functions for insulating
and semiconducting materials in the literature [12–16], some of which are based on ETB
approximations for the electronic structure of the material [13–15]. The model that we use
to calculate the electron self-energy in insulators is similar to the electronic polaron model
of Toyozawa [17]. The particular DD model considered here consists of dipole-polarizable
sites placed at atom centres, coupled by point-dipolar electrostatic fields. The model gives a
good account of the long wavelength dielectric function of bulk silicon [3] and anisotropies in
the reflectivities of silicon surfaces [10]. Systems with unit cells containing over 100 silicon
atoms and slabs over 80 Å thick with periodic boundary conditions parallel to the surface can
be treated so that, for example, optical effects which persist many atomic layers into a solid
surface can be studied.

In section 2 the DD and ETB models are outlined, the relationship between the response
functions derived using these models is established and expressions for the screened interaction
and GW self-energy are given within the ETB approximation. In section 3 dispersion relations
for plasmon modes and ETB model self-energies in condensed argon are presented. Screening
mechanisms are discussed in section 4 and a summary is given in section 5. A derivation of the
ETB dielectric function is given in Appendix A and lattice sums are described in Appendix B.

2. Model dielectric functions

2.1. Definitions

The key quantities in a calculation of the self-energy of electronic states within the GW
approximation [18, 19] are the inverse dielectric function, ε−1, the response function, R, the
screened interaction between charges, W , and the polarizability, P . Each of these is a two
point function in space variables and is frequency dependent. When expressed in a basis,
these functions become matrices whose elements depend on wavevector, q, and frequency, ω.
The dielectric function relates an external applied potential to the total potential, i.e. external
potential plus induced potential, through the density response function or polarizability, P ,
and is given by [19]

ε = 1 − v
δρ

δV tot
= 1 − vP (1)

where ρ is the induced charge density, V tot is the total potential and v is the Coulomb
interaction. The inverse dielectric function gives the response to an external potential and
is [19]

ε−1 = 1 + v
δρ

δφ
= 1 + vR (2)

where φ is an external potential andR is the response function. The polarizability and response
function are related by

R = (1 − vP )−1P = (P−1 − v)−1. (3)
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Figure 1. Diagrammatic representation of equation (5). In the rightmost diagram an electron
undergoes an intra- or inter-band scattering event and polarizes the medium, which in turn reacts
on the scattered electron.

Finally, the screened interaction between electric charges is

W = ε−1v = v + vRv. (4)

Single particle excitations in an interacting system [18] occur at the poles of the Green
function of the interacting system. Dyson’s equation for the Green function of the interacting
system, G,

G = G0 + G0�G (5)

relates G to the Green function for the non-interacting system, G0, and the self-energy,
�. Feynman diagrams representing equation (5) are illustrated in figure 1. Hedin’s GW
approximation [18, 19] to the self-energy operator involves a frequency convolution of the
Green function for the non-interacting system with the screened interaction so that� = iG0W .
Manipulation of equation (5) shows that

G = (G−1
0 − �)−1 (6)

so that poles of G are shifted from poles of G0 by �, which represents a correction to single
particle excitation energies. In order to find these energy shifts, matrix elements of the self-
energy operator with the state in question, �ik, must be calculated,

�i(k, ω) = 〈�ik|�(r, r′, ω)|�ik〉. (7)

In many GW calculations [1] a plane wave basis is used. However, the physical processes
represented by this approximation become much clearer when a local orbital basis is used.
These include induction of virtual charges in the material as an electron or hole scatters from
state to state (figure 1) and screening of these charges by induction of dipole moments at sites
neighbouring the virtual charges. The ETB model valence band consists of p states and the
conduction band consists of s states. An electron in a valence band state, pk, can scatter into
a state pk+q, emitting a ’photon’ with momentum q and thereby interacting with the medium
before scattering back into the original state. In scattering from one p state to another, the virtual
charge is a density wave of ‘p monopoles’, i.e. pk(r)

∗pk+q(r) exp[iq · R] and it interacts with
the medium through a screened 1/r potential. R is a lattice translation vector. An electron
scattering from one s state to another induces a wave of ‘s monopoles’ and also interacts with
the medium through a screened 1/r potential. However, an electron in a p state scattering into
an s state induces an ‘sp dipole’, i.e. s∗

k(r)pk+q(r) exp[iq · R] and interacts with the medium
through a screened 1/r3 potential. Thus the self-energy for an s or p state contains screened
monopolar and dipolar interactions with the medium, and in general it will contain additional
interactions with the medium describable in terms of higher multipoles.
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2.2. Discrete dipole model

The DD model used by this group has been described in detail elsewhere [3] and only a brief
summary is given here. The dipole induced at any site is determined by the polarizability and
the local field,

pi (ω) = αi(ω) · ELOC
i = αi(ω) · [EA

i (ω) − tij · pj (ω)] (8)

where pi (ω) is the dipole moment at site i and αi(ω) is a frequency-dependent polarizability
matrix for site i. In this work the polarizability is isotropic; in our earlier work, e.g. [3], a
polarizability with a small anisotropy was used. The polarizability is

αi(ω) = 2e2

m((ω0 − iδ)2 − ω2)
I = e2α(ω)I. (9)

ELOC
i is the local field, which consists of an external field, EA

i , and a field created by all other
dipoles in the system. tij is a 3 × 3 dipole–dipole interaction tensor which determines the
contribution to the local field at site i due to a dipole at site j and I is the 3 × 3 unit matrix. m
is an effective mass and ω0 is the bare transition frequency of a bond or atom. When dipolar
coupling of polarizable sites is taken into account, a set of normal modes can be obtained [3].
A bare transition energy of h̄ω0 = 14.3 eV was used for argon [20].

In what follows we use the convention that if a subscripted site index is used with a
vector or matrix, a single atom or covalent bond site is indicated but if no index is used then a
composite vector or matrix describing a whole (finite) system or unit cell is indicated. We also
adopt a notation where the dependence of any quantity, f , on wavevector, q, may be indicated
as f (q) or fq.

Equations (8) and (9) are suitable for treating a finite system, but when an infinite system is
treated using periodic boundary conditions, site dipole moments are replaced by characteristic
dipoles in the zeroth unit cell. Dipoles outside the zeroth unit cell, pλ(ω), are related to the
characteristic dipoles, pλ(ω), by

pλ(ω) = pq(ω) exp[iq · Rλ] (10)

where Rλ is a lattice vector connecting the two sites in the zeroth and λth unit cells. The local
field at the ith characteristic dipole site caused by a wavelike excitation of dipoles at the site
labelled j in each unit cell can be evaluated by a discrete Fourier transform of dipole–dipole
interaction tensors, t(Rλ) exp[iq · Rλ] = Tq [3]. In a lattice with no external field present,
equation (8) becomes[(

α−1(0) − mω2

2e2

)
I + Tq

]
· pq(ω) = 0 (11)

and free dipole oscillations are found at zeros of the determinant,

|(α−1(0) − µ2
nq)I + Tq|. (12)

The response function for a bulk discrete dipole system can be expressed in terms of the
characteristic dipoles and the eigenvalues and eigenvectors of the matrix in equation (11).
The eigenvectors, pnq, are called dipole waves and have eigenfrequencies, $nq, related to the
eigenvalues of equation (12), µ2

nq, by [3]

$2
nq = 2e2µ2

nq/m. (13)

It is convenient for later sections to express eigenvector characteristic dipoles as charges times
displacement from equilibrium, pnq = 2exnq. The dipole response function, α(q, ω), for a
bulk discrete dipole system is defined by

p(q, ω) = α(q, ω) · EA(q, ω) (14)
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where α(q, ω) is given by [3],

α(q, ω) =
∑
n

2e2

m

xnqx
T ∗
nq

($nq − iδ)2 − ω2
= e2Xq. (15)

2.3. Extreme tight binding model

An ETB model is used to derive the dielectric function, response function, screened interaction
and self-energy of a system with one site per cell. This is a model in which the quantum
mechanical wavefunctions for the system are sufficiently localized on sites that there is no
overlap between wavefunctions on different sites. Consequently there is no dispersion of
eigenvalues associated with these states when such a model is used for a crystalline solid;
there is a single valence band energy and a single conduction band energy in the ETB model
for crystalline Ar. The overlap matrix in the ETB basis is a unit matrix. An approximation in
the dielectric function derived below allows the response function and inverse dielectric matrix
to be expressed in terms of dipole wave eigenvectors and eigenfrequencies, thereby making
the connection between the two models.

As stated above, valence bands in this model are linear combinations of non-overlapping,
Cartesian–Gaussian p orbitals located at the atom centre. Conduction bands are non-
overlapping s orbitals at the same sites. Valence and conduction bands are normalized on
one unit cell whose volume is denoted V . Hamiltonian matrix elements between orbitals
on different sites are assumed to be zero and so linear combinations of one orbital type per
primitive cell,

�ik(r) =
∑
λ

χi(r − Rλ) exp[ik · Rλ] (16)

satisfy the Schrödinger equation. i is a site/orbital index (i = 1, . . . , 4 refer to s, px , py , pz), λ
is a unit cell index and χ is an s or p orbital normalized on the unit cell. These eigenfunctions
are also used as expansion functions for the Coulomb interaction, etc. A 2 × 2 matrix notation
is used to represent the 4 × 4 matrix of expansion coefficients for these quantities. The blocks
of the 2 × 2 matrix are ss, sp, ps and pp, i.e. the 3 × 3 block of pp expansion coefficients is
represented by a single matrix entry, etc. Specifically, the px valence and s conduction bands
for argon are

�2k(r) =
∑
λ

(2π)1/2

(
2ξ

π

)5/4

(x − Rλ,x) exp[−ξ(r − Rλ)
2] exp[ik · Rλ] (17a)

and

�1k(r) =
∑
λ

(
2ξ

π

)3/4

exp[−ξ(r − Rλ)
2 exp[ik · Rλ]. (17b)

Matrix representations of v andP in the ETB basis are derived in Appendix A and, together
with ε, are given by

v(q) = (2π)3/2

ξ 5/2

e2

4πε0



(

ξ

2π

)3/2

+ ξR1q ξ 1/2R2q

ξ 1/2R∗
2q

1

3

(
ξ

2π

)3/2

+ Tq


 (18)

P (ω) = − ξ 5/2

(2π)3/2
aα(ω)

(
0 0
0 I

)
(19)
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ε(q, ω) =
(

1 0
0 I

)
+ aα(ω)

e2

4πε0

[(
0 ξ 1/2R2q

0 Tq

)
+

1

3

(
ξ

2π

)3/2 (
0 0
0 I

)]
(20)

where a = 8(2/3)6 = 0.702 . . ., ξ is the orbital exponent, α(ω) = 2/m((ω0 − iδ)2 −ω2) and
R1q, R2q are Fourier transformed lattice sums similar to Tq (appendices A and B). Diagonal
terms proportional to ξ−1 in equation (18) are contributions to the potential energy matrix from
Rλ = 0 in equation (A.9) (‘on-site’ contributions) and the others are ‘inter-site’ contributions
(from Rλ 	= 0). (Rλ was previously defined to be a real space lattice vector.) P is a function
of frequency only, because there is a single band gap in the ETB model and matrix elements are
independent of wavevector. It contains only diagonal pp parts as matrix elements of the RPA
polarizability consist of three-orbital products. The only non-zero combinations are 〈s|pp〉,
〈s|ss〉, 〈p|sp〉 and 〈p|ps〉. The RPA polarizability contains products of a p ground state and an
s excited state and the only basis function to overlap with this product is an identical p orbital,
which makes P diagonal.

On-site contributions to the Coulomb interaction appear in the diagonal elements of vq;
inter-site contributions can be compared to these using the fact that at small q, R1q ∼ 4π/V q2;
at small q, Tq = 8π/3V = 8

√
2π/3|R|3 for an fcc lattice [21] and it decreases by a

factor of ∼ 2 for q ∼ π/a (appendix B). (R is used to denote a primitive lattice translation
vector.) Hence inter-site contributions dominate on-site contributions if Tq � 1/3(ξ/2π)3/2

or ξ |R|2  8π5/3 ∼ 50, and if ξR1q � (ξ/2π)3/2 or ξ |R|2  128π (at q = π/a where R1q

is smallest). In condensed Ar the nearest neighbour separation is 3.76 Å and an appropriate
value of ξ for Ar is 1.0 Å−2, so that ξ |R|2 ∼ 15, hence the contribution from the on-site terms
will be smaller than that from inter-site terms, but not insignificant. The main effect of these
on-site terms in the ETB model is to shift the discrete dipole mode frequencies (which appear
as plasmon pole frequencies in the model self-energy calculation) up by a small, uniform
amount. A value of ξ of 1.0 Å−2 is equivalent to an upward shift of ∼ 2 eV. The on-site term
in equation (20) will be omitted from dielectric matrices from here on.

The overlap of two s Gaussian orbitals separated by a lattice constant is exp[−ξ |R|2/2]
and so the negligible overlap criterion is satisfied provided ξ |R|2 � 2.

In order to proceed further with this model, to calculateW and�, either the ETB dielectric
function must be inverted numerically, or the dielectric function must be approximated so that
it can be inverted otherwise. We choose to do the latter. In order to identify an approximation
for the response function, R, in terms of discrete dipole eigenvectors and eigenvalues, the
dielectric function in equation (20) is approximated by

ε(q, ω) =
(

1 0

0 I +
e2

4πε0
α(ω)Tq

)
. (21)

In making this approximation the off-diagonal matrix element in the first term in square brackets
in equation (20) is neglected to make ε block-diagonal. Furthermore, we note that when the
factor a in equation (20) is set to unity (cf 0.702 . . .), the lower right element of the dielectric
matrix in equation (21) is related to the matrix (α−1 + T ) by

1 + T α = (α−1 + T )α. (22)

(α−1 + T ) is the matrix which is diagonalized to obtain discrete dipole eigenvalues and
eigenvectors and its inverse can be expressed in terms of these eigenvalues and eigenvectors.
The inverse of the matrix in equation (21) is therefore

ε−1(q, ω) =
(

1 0
0 α−1(ω)Xq

)
=
(

1 0
0 I

)
− e2

4πε0

(
0 0
0 TqXq

)
. (23)
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The second equality in equation (23) is true because Xq is the inverse of (α−1 + T ). The
response function identified from equations (3), (19) and (23) is

R(q, ω) = − ξ 5/2

(2π)3/2

(
0 0
0 Xq

)
. (24)

Using this response function, the definition of ε−1 in equation (2) and the Coulomb interaction
in equation (18), the inverse dielectric matrix is

ε−1(q, ω) =
(

1 0
0 I

)
− e2

4πε0

(
0 ξ 1/2R2qXq

0 TqXq

)
. (25)

The screened interaction (equation (4)) using equation (25) and equation (18) is

W(q, ω) = (2π)3/2

ξ 5/2

e2

4πε0

×
[(

ξR1q ξ 1/2R2q

ξ 1/2R∗
2q Tq

)
− e2

4πε0

(
ξR2qXqR

∗
2q ξ 1/2R2qXqTq

ξ 1/2TqXqR
∗
2q TqXqTq

)]
. (26)

W contains the direct Coulomb interaction in the first round bracket and the screening
response of the polarizable medium in the second. The ss block of the latter part describes the
radial electric field coupling a virtual monopole to the surrounding dipole-polarizable medium
and the induced potential at the site of the virtual monopole caused by induced dipoles. The sp
block describes coupling of monopoles to the medium and the induced potential experienced
by a dipole; the pp block describes coupling of dipoles to the medium and the induced potential
experienced by a dipole.

Within the GW approximation, the self-energy operator is obtained from the convolution
of the one-particle Green function with the screened interaction [18]

�(r, r′, ω) = ih̄
∫ ∞

−∞

dω′

2π
e−iδω′

G0(r, r
′, ω − ω′)W(r, r′, ω′) (27)

where δ is a positive infinitesimal. The non-interacting Green function is

G0(r, r
′, ω) = 2

∑
i,k

�ik(r)�
∗
ik(r

′)
h̄(ω − ωik + iδ sgn(εik − εf )

(28)

where the sum is over all valence and conduction band states, εi = h̄ωik, is the valence band
or conduction band energy and εf is the Fermi energy, defined to lie between the valence and
conduction band states in this model. The factor of two comes from a sum over spin. If the
valence band energy is denoted h̄ωv and the conduction band energy is denoted h̄ωc, the matrix
representation of G0 in the Gaussian orbital basis is

G0(k, ω) = 2

h̄




1

ω − ωc + iδ
0

0
1

ω − ωv − iδ
I


 . (29)

Evaluation of the self-energy for a particular state involves a contour integration
(equation (7)) along the real axis in the upper-half complex plane and spatial integrals in two
spatial variables, r and r′. Each spatial integral involves the state itself and one basis function
from each of W and the intermediate G0 in the rightmost diagram in figure 1. The spatial
integrals determine the multipolar nature of the screening. Scattering into the intermediate
states in this G0 produces a virtual monopole or dipole depending on whether the scattering
event is an intra- or inter-band scattering. Matrix elements of the self-energy operator are
given in equation (30) and (31) (note that these are not coefficients of a matrix expansion
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of the self-energy operator). Equation (30) gives contributions to the self-energy from the
unscreened Coulomb interaction and divides this into on-site and inter-site parts; this is the
static Hartree–Fock exchange [19].

�on-site
HF = −29

35

e2

4πε0

( 0 0

0
ξ 1/2

3(2π)3/2

)
(30a)

�inter-site
qHF

= −29

35

e2

4πε0

( 1

ξ
Tr Tq ξ−1/2R∗

2q

ξ−1/2R2q R1qI

)
. (30b)

Equation (31) gives the contribution to the self-energy from the dynamic part of W [1], i.e. the
Coulomb hole and screened exchange contributions [18, 19],

�(q, ω) = 1

2$nq

1

(ω − ωi + sgn(εf − h̄ωi)$nq)

29

35

(
e2

4πε0

)2

×

1

4

(
R2qXqR

∗
2q ξ−1/2R∗

2qXqTq

ξ−1/2TqXqR
∗
2q

1

ξ
TqXqTq

)
i=1

+

( 1

ξ
Tr TqXqTq ξ−1/2(TqXqR

∗
1q)

T

ξ−1/2(R∗
2qXqTq)

T R2qXqR
∗
2qI

)
i=2−4


 . (31)

The subscript i in equation (31) refers to the self-energy when the intermediate state is a
conduction band state (i = 1) and when the intermediate state is a valence band state (i = 2–4).
Note that the frequency denominators have been integrated out of the response function Xq in
equation (31). Hence the diagonal matrix element of the self-energy operator for conduction
band states contains the terms R2qXqR

∗
2q and Tr TqXqTq. The first term arises from intra-

band scattering and the latter from inter-band scattering. The trace in the latter term arises
as there are several p states available as intermediate states. The diagonal matrix element of
the self-energy operator for valence band states contains the terms R2qXqR

∗
2q and TqXqTq.

There is no trace in the second term as there is only one intermediate conduction band in the
ETB model.

3. Dispersion relations and self-energies

In this section plasmon pole dispersion relations are presented for Ar calculated from the
discrete dipole equations (equation (12) and (13)) and these are used to calculate matrix
elements of the self-energy operator for the ETB valence and conduction band states using
equation (31). The plasmon pole energies, $q, appear in the frequency denominator in
equation (31) and the discrete dipole eigenvectors appear in the response function, Xq. Self-
energy matrix elements are compared to ab initio calculations of matrix elements of valence
and conduction band states in the bulk solid.

The plasmon pole dispersion relation obtained by solving equation (12) and (13), for
Ar along the 2 and 3 directions in the Brillouin zone is shown in figure 2. A static Ar
polarizability of 1.20 × 10−40 C m2 V−1 located at atom centres, an effective mass of 1.0,
in units of the bare electron mass, and a nearest neighbour distance of 3.76 Å were used.
The polarizability and effective mass used result in a 4 point transverse mode energy of
h̄(ωc − ωv) = 14.3 eV, equivalent to the electron–hole energy gap (excluding excitonic
effects) in solid Ar [22]. This value is less than the experimental value for the static
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Figure 2. Plasmon energy versus wavevector for fcc argon with isotropic polarizability of
1.20 × 10−40 C m2 V−1. The upper mode is longitudinal and the lower modes are a degenerate
pair of transverse modes.

polarizability of argon derived from the macroscopic dielectric function and the Claussius–
Mossotti function [22], 1.83×10−40 C m2 V−1. The dispersion relation contains a longitudinal
(L) branch and two degenerate transverse (T) branches of lower energy. The L–T splitting is
relatively small owing to the low polarizability density of Ar.

The energy-dependent parts of the self-energy for Ar valence and conduction band states
(i.e. the self-energy excluding the static Hartree–Fock part as in equation (30)), are shown
in figures 3 and 4. These figures show the self-energy calculated using the ETB model
and an ab initio code with input wavefunctions and energy eigenvalues from a local density
approximation–density functional (LDA–DF) band structure calculation performed using a
Gaussian orbital basis [23]. The ab initio self-energy curves were obtained for valence and
conduction band states at the 4 point of the Brillouin zone. The valence band energy for the
ETB model and valence band maximum for the ab initio calculation were chosen to be at zero
energy. The LDA–DF band gap was 13.6 eV.

The ETB model self-energy for a p valence band state is given by the terms on the bottom
right in the square brackets in equation (31). The term containing the factor R2qXqR

∗
2q arises

from intra-band scattering while the term containing the factor TqXqTq arises from inter-
band scattering. As noted above, the former scattering process results in induction of virtual
monopoles on lattice sites while the latter results in induction of virtual dipoles. Intra-band
scattering for the p valence state results in a peak in the self-energy curve around −16 eV
(figure 3) while inter-band scattering results in a very weak peak around +30 eV (figure 3).
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Figure 3. Energy dependence of valence band matrix elements of the self-energy operator of fcc
argon. ETB model (solid line), ab initio calculation for a valence band state at the 4 point of the
Brillouin zone (dashed line). The ETB self-energy curve has been scaled by a factor of 4 above
20 eV.

The ab initio self-energy calculation shows several intra-band scattering peaks for valence
states around −25 eV, which are several times larger than that of the ETB model. The ab initio
calculation shows that the inter-band scattering contributes much smaller peaks (∼2 eV peak
to peak height around +30 eV) than intra-band scattering for either valence or conduction band
states.

The ETB model self-energy for an s conduction band state is given by the terms on the
upper left in square brackets in equation (31). The terms containing the factors R2qXqR

∗
2q

and TqXqTq again arise from intra- and inter-band scattering events. Intra-band scattering
for the s state in the ETB model results in a peak around +30 eV while inter-band scattering
results in a peak around −16 eV. In this case the ETB and ab initio calculations disagree on
the magnitude of the intra- and inter-band scattering.

4. Discussion

In previous sections we presented a model and ab initio calculations for the self-energy of
valence and conduction band electrons in a solid with a simple electronic structure, solid Ar.
In this section we discuss the ETB model in the light of the results of ab initio calculations
on Ar. We also make several observations regarding screening in Ar and compare screening
in Ar in the ETB model to Clausius–Mossotti screening. We consider how virtual monopoles
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Figure 4. Energy dependence of conduction band matrix elements of the self-energy operator of
fcc argon. ETB model (solid line), ab initio calculation for the lowest energy conduction band state
at the 4 point of the Brillouin zone (dashed line).

and dipoles couple to the screening dipoles and how effectively these screen monopoles and
dipoles.

The model presented above is transparent but fails to give a quantitative account of the
energy dependence of the self-energy in Ar; plasmon energies tend to be too low and there
is structure in the ab initio self-energy curves which cannot be explained using the model.
This may be due to the severe approximations regarding magnitudes of matrix elements in the
model. However, we believe that it is more likely that this is because of omission of important
terms in the polarizability (equation (19)). The only part of the polarizability included in this
model is the dipole–dipole part; monopole–monopole terms and others have been omitted.
The monopolar term in the polarizability would arise, for example, from valence band 3p and
conduction band 4p derived states and would appear in the top right element of the matrix
representing the polarizability (equation (19)). 4p derived bands lie 30.5 eV above the valence
band maximum in our LDA–DF calculation. Interaction between dipolar and monopolar
transitions could produce the structure in the ab initio self-energy curves (figures 3 and 4).
Evidence for the importance of these modes is provided by the dielectric band structure [24]
of Ar [23], where it is found that the eigenvalue of the Hermitian, inverse dielectric function
with the smallest value (in a sense, the most screening) corresponds to an eigenpotential which
is spherically symmetric about each atom centre.

Polarization associated with a spherically symmetric eigenpotential is shrinking or
expansion of the atomic charge sphere. This will obviously be important in the self-energy of
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electrons or holes in the solid. On the other hand, this type of polarization process does not
directly determine the optical properties of the material. Instead these are directly determined
by transverse dipolar polarization. Hence, the discrete dipole model is successful in describing
optical properties of semiconductors but a more general multipolar model of polarization is
necessary to describe both optical properties and the self-energies of materials. Inclusion of
both the monopolar and dipolar parts of the polarizability in equation (19) would lead to a
problem requiring numerical inversion of the dielectric function and is beyond the scope of
the present paper.

We continue with a discussion of screening of virtual monopoles and dipoles by the dipolar
part of the response function. For a centrosymmetric crystal structure such as the fcc structure,
the lattice sumsR1q, R2q and Tq are pure real, imaginary and complex, respectively. Screening
of a virtual ‘s monopole’ is proportional to R2qXqR

∗
2q. Since R2q is pure imaginary, this term

is negative and counteracts the direct Coulomb interaction, R1q, with other charges in the
system, as expected in a screened interaction. The vector lattice sum R2q also has the property
that it is parallel to the wavevector, q. This ensures that only dipole waves with a longitudinal
component couple to the monopole and screen it. Here longitudinal component means that
the dipole wave eigenvector has a non-zero component parallel to the wavevector, q.

Screening of virtual monopoles and dipoles in Ar is qualitatively different. The term
TqXqTq in the self-energy in equation (31) is due to inter-band scattering, which leads to
formation of virtual dipoles on lattice sites, which can excite both L and T polarization waves.
The fact that transverse polarization waves can contribute to screening of electrons and holes
is somewhat surprising since point charges generate purely longitudinal fields. However,
scattering of an electron or hole from a state sk to a statepk+q leads to a longitudinal (transverse)
polarization wave if the axis of the p orbital is parallel (perpendicular) to the wavevector, q, and
the transverse polarization wave can couple to T modes in the response function. We consider
the particular case of contributions of L and T modes to the term TqXqTq in the self-energy.
For a small wavevector q ‖ x, Tq is proportional to( 2 0 0

0 −1 0
0 0 −1

)
. (32)

The eigenvectors which make up Xq are directed along x (L mode), y or z (T modes) and so
the matrix TqXqTq contributing to the self-energy is proportional to( 4 0 0

0 2 0
0 0 2

)
(33)

the first entry on the diagonal in equation (33) arises from the L mode polarized ‖ x and the
second two from the T modes polarized ‖ y or z.

In a model for screening involving interacting point dipoles it is reasonable to expect that
the dielectric function for screening at long range (small wavevector, q) will be the Clausius–
Mossotti dielectric function, ε. We now demonstrate that the inverse dielectric function for
screening of the field due to a monopole in the ETB model is that given by the Clausius–
Mossotti dielectric function. The Clausius–Mossotti (CM) relation between the polarizability,
α, and macroscopic dielectric function, ε, is

ε − 1

ε + 2
= α

3ε0V
. (34)

The static, inverse dielectric constant, 1/ε, is then expressed as 1 − A, where

A = α/ε0V

1 + 2α/3ε0V
. (35)



Multipolar contributions to electron self-energies 1227

A may be rewritten as

A = e2

4πε0

8π

V

1

m$2
q

(36)

by noting that for a monatomic lattice Tq is diagonal and has elements VTq =
(4π/3)(2,−1,−1) in the long wavelength limit [21]. Replacing the longitudinal part of Tq

by 8π/3V in equation (11),(
α−1 +

Tq

4πε0

)
= m$2

q

2e2
(37)

and using this relation in equation (35) gives the result in equation (36).
At small wavevector R1q ∼ 4π/V q2 and R2q ∼ 4π/V q (appendix B). Using these

approximations and equations (15) and (26), the ss block of the screened interaction at long
wavelength is approximately

Wqss =
(

2π

ξ

)3/2
e2

4πε0

4π

V q2

(
1 − e2

4πε0

8π

V

1

m$2
q

)
. (38)

Since, at long wavelength, the second term in brackets is A, Wqss is the Coulomb potential
screened to the extent given by CM.

5. Conclusion

The discrete dipole model is generally regarded as a phenomenological model for optical
properties of semiconductors. We have shown that the dielectric function of an insulator can
be expressed in terms of discrete dipole eigenvectors and dipole wave energies in an extreme
tight binding model. The ETB model has been used to obtain an expression for the screened
interactions and self-energies of electron and hole states in Ar in terms of lattice sums. When
self-energies for these states calculated using the ETB model are compared to self-energies
obtained in an ab initio calculation, it is found that structure in the ab initio calculations
and relative magnitudes of peaks in the self-energy curves are not reproduced by the model.
The discrete dipole polarizability and response functions contain only dipolar polarization
processes; these are obviously important in determining optical properties of semiconductors
but important monopolar polarization processes are omitted in the present model and are
expected to be important in determining electron and hole self-energies.
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Appendix A. The ETB dielectric matrix

The RPA polarizability (equation (1)) is given by equation (73) in [19],

P(r, r′, ω) = 2
occ∑
ik

unocc∑
jk′

�∗
ik(r)�jk′�∗

jk′(r′)�ik(r
′)

×
[

1

ω − Ejk′ + Eik + iδ
− 1

ω + Ejk′ − Eik − iδ

]
. (A.1)
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The numerator in equation (A.1) consists of products of valence band and conduction band
states at different k points. Owing to lattice translation symmetry, the polarizability function
has the periodicity of the lattice, i.e. P(r + R, r′ + R) = P(r, r′), where R is any lattice
translation vector, and may therefore be expanded in an orbital basis such as that in equation (74)
in [19] as

P(r, r′, ω) =
∑
ijq

Pij (q, ω)�iq(r)�
∗
jq(r

′). (A.2)

The expansion is limited to the same set of s and p Gaussian functions as used for the valence
and conduction bands. Since the expansion functions and wavefunctions are independent
of wavevector in the ETB approximation, the k or q index on these functions is omitted in
the remainder of this appendix. Coefficients in the expansion are determined from a double
integration over the unit cell volume, V [19],

Pij (q, ω) =
∫ ∫

V

dr d3r′�∗
i (r)P (r, r

′, ω)�∗
j (r

′). (A.3)

Matrix elements in equation (A.3) are non-zero only when both expansion orbitals (�i,�j ) are
identical p orbitals when the wavefunctions satisfy the non-overlapping condition assumed in
the ETB model. The non-zero matrix elements obtained by substituting P from equation (A.1)
into equation (A.3) are

|〈�p | �s�p〉|2 =
(

ξ

2π

)3/2

283−5 (A.4a)

|〈�s | �s�s〉|2 =
(

ξ

2π

)3/2

263−3. (A.4b)

Since there is only one optical transition energy, Eg = Ek′ − Ek = h̄ω0, the denominators in
equation (A.1) may be rewritten as∑

q

−4Eg

(Eg − iδ)2 − ω2
. (A.5)

The oscillator strength sum rule may be used to deduce a value for Eg in terms of ξ . There
are six transitions per electron pair in the ETB model and the oscillator strength sum rule [25]
requires that

2mh̄ω0

h̄2 |〈�1q|x|�2q〉|2 = 1

6
. (A.6)

The squared dipole matrix element in equation (A.6) is equal to 1/4ξ . Equations (A.3) to (A.6)
can therefore be used to express the polarizability for one site per primitive cell as

P (ω) = − ξ 5/2

(2π)3/2

29

36

2

(ω0 − iδ)2 − ω2

(
0 0
0 I

)
= − ξ 5/2

(2π)3/2
aα(ω)

(
0 0
0 I

)
(A.7)

where a = 8(2/3)6 and α(ω) = 2/m((ω0 − iδ)2 − ω2).
The Coulomb potential may be expanded similarly as

e2

|r − r′| =
∑
ijq

vij (q)�i(r)�
∗
j (r

′) (A.8)

with expansion coefficients given by

vij (q) =
∑
λ

∫ ∫
V

d3r d3r′�
∗
i (r) exp[iq · Rλ]�j(r

′)
|Rλ + r′ − r| . (A.9)
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In order to demonstrate the equivalence of the discrete dipole and ETB models, a Taylor
expansion of the denominator of equation (A.9) is made,

1

|R + r′ − r| = 1

R
− (r′ − r) · R

|R|3 +
(r′ − r)(r′ − r)

2!
:

3RRT − R2I

|R|5 + · · · . (A.10)

The third term on the right-hand side of equation (A.10) contains the dipole–dipole interaction
tensor,

t = −3RRT − |R|2I
|R|5 . (A.11)

The expansion coefficients of the Coulomb potential contain lattice sums of integrals
(equation (A.9)) over the local coordinates r and r′, multiplied by the factor exp[iq · Rλ].
The leading term in the expansion depends on the particular Gaussian expansion functions.
When both functions are s orbitals, the leading term is proportional to 1/|R|, for one s orbital
and one p orbital, the leading term is proportional to R/|R|3, for both p orbitals the expansion
coefficients are the dipole–dipole interaction tensors which appear in the discrete dipole model.
The top right elements of the symmetric, Coulomb potential matrix, omitting a common factor
of
∑

λ exp[iq · Rλ], are


1

ξ
+

(
2π

ξ

)3/2 1

|Rλ|
(2π)3/2

ξ 2

Rx

|Rλ|3
(2π)3/2

ξ 2

Ry

|Rλ|3
(2π)3/2

ξ 2

Rz

|Rλ|3
1

3ξ
+
(2π)3/2

ξ 5/2
Txx

(2π)3/2

ξ 5/2
Txy

(2π)3/2

ξ 5/2
Txz

1

3ξ
+
(2π)3/2

ξ 5/2
Tyy

(2π)3/2

ξ 5/2
Tyz

1

3ξ
+
(2π)3/2

ξ 5/2
Tzz



. (A.12)

The matrix consists of a 1 × 1 ss block on the top left, a 3 × 3 pp block on the bottom left
and 1 × 3 and 3 × 1 sp and ps blocks. The diagonal elements 1/ξ and 1/3ξ come from terms
in equation (A.9) where Rλ = 0. Equivalent self-interaction or ‘on-site’ terms are omitted in
discrete dipole lattice sums.

Appendix B. Lattice sums

The Ewald lattice sum for the ss block of the potential matrix (equation (A.12)) is

R1q(A) =
∑
λ

′ eiq·Rλ

|Rλ − A| . (B.1)

A is the field point for the lattice sum with sources distributed with strength exp[iq · Rλ] on
the lattice, Rλ is a lattice translation vector and the sum is over the entire infinite lattice with
the exception of Rλ = 0. For the fcc lattice the only sum required is the sum with A = 0.
This sum may be uniquely evaluated using the technique described by Nijboer and de Wette
[26] using the expression

R1q(A) =
[∑

λ

′ 4(1/2, π |Rλ − A|2) eiq·Rλ

√
π |Rλ − A| − γ (1/2, π |A|2)√

π |A|

+
4π3/2

V

∑
λ

4(1, |Gλ − q|2/4π) ei(Gλ−q)·A

|Gλ − q|2
]
. (B.2)

4 and γ are the incomplete gamma function and complementary incomplete gamma functions,
respectively. The second term on the right-hand side of equation (B.2) has a limiting value
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Figure B1. Dependence of R1q (dotted line) and |R2q |2 (dashed line) lattice sums on q in an fcc
lattice for q from 4 to X. A constant of 2 has been added in R1q corresponding to the Rλ = 0
term in that sum. The fcc nearest neighbour distance has been chosen as the unit of length. The
function 4π/V q2 is shown for comparison (solid line) as the sums tend to this function at small q.
The generic label S(q) is used for the magnitude of each lattice sum.

of −2
√
π as A tends to the null vector. Gλ is a reciprocal lattice vector and the sum is over

the entire reciprocal lattice. The lattice sums required for the sp and ps blocks of the potential
matrix are obtained from

∂AR1q(A) = R2q(A) =
∑
λ

(Rλ − A) eiq·Rλ

|Rλ − A|3 (B.3)

by differentiating the expression in equation (B.2). The result is

R2q =
∑
λ

(Rλ − A) eiq·Rλ

|Rλ − A|2
[
4(1/2, π |Rλ − A|2)√

π |Rλ − A| + 2 e−π |Rλ−A|2
]

+
A

|A|2
[
γ (1/2, π |A|2)√

π |A| − 2 e−π |Rλ−A|2
]

+
4π3/2i

V

∑
λ

(Gλ − q)
4(1, |Gλ − q|2/4π) ei(Gλ−q)·A

|Gλ − q|2 . (B.4)

The second term in square brackets in equation (B.4) goes to zero linearly as A tends to 0. R1q

and R2q sums for an fcc lattice with A = 0 and wavevector ranging from the 4 to the X point
of the Brillouin zone are shown in figure B1. At small wavevector R1q and R2q are dominated
by reciprocal lattice sums; R1q behaves like 4π/V q2 and R2q behaves like 4π/V q at small q,
which is to be expected as these are the discrete Fourier transforms of 1/r and r/r3.
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Lattice sums required for the pp block of the Coulomb potential are obtained from

∂AR2q(A) = −Tq(A) =
∑
λ

3(Rλ − A)(Rλ − A)T − |(Rλ − A)|2I
|Rλ − A|5 eiq·Rλ . (B.5)

These were evaluated using a method described by Born and Huang in equation (30.30) and
equation (30.31) in [27]. These lattice sums are weakly dependent on q.
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